

October 20, 2020

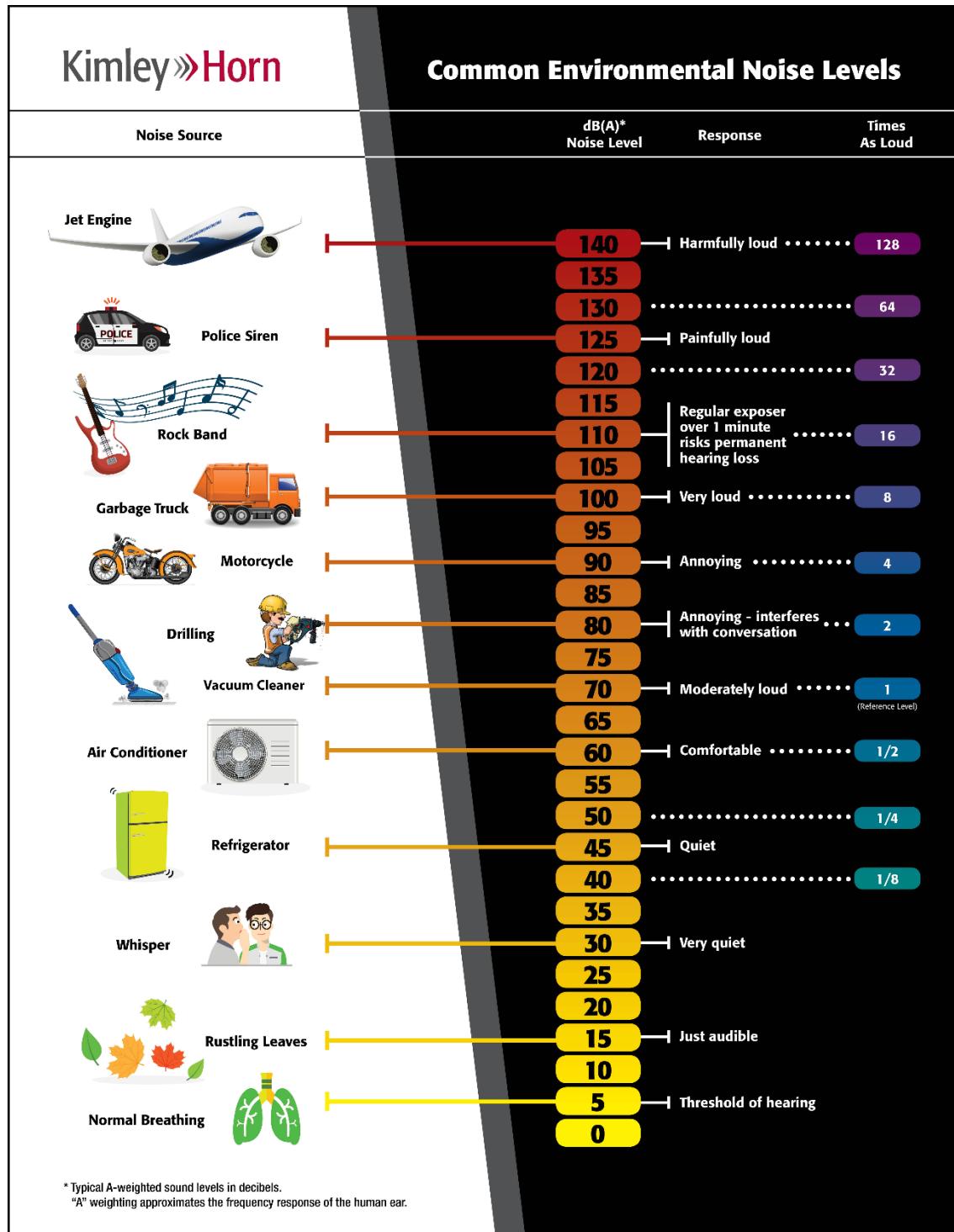
Town of Chapel Hill  
405 Martin Luther King Jr Boulevard  
Chapel Hill, NC 27514

**Subject: *Fordham Boulevard Noise Monitoring for STIP Project EB-5721***

At the request of the Town of Chapel Hill, Kimley-Horn conducted ambient noise monitoring on both sides of Fordham Boulevard (US 15-501) in the area surrounding STIP Project EB-5721, which proposes to construct a 10-foot-wide multi-use path along Fordham Boulevard from Cleland Drive to Willow Drive. The following memorandum has been prepared to document the existing sound levels measured in the vicinity of the residential area adjacent to the proposed project.

### **Characteristics of Noise**

Noise is generally defined as unwanted sound. It is emitted from many natural and man-made sources. The degree of disturbance or annoyance from exposure to unwanted sound – noise – depends upon three factors:


1. The amount, nature, and duration of the intruding noise
2. The relationship between the intruding noise and the existing sound environment; and
3. The situation in which the disturbing noise is heard

Over time, individuals tend to accept the noises that intrude into their lives on a regular basis. However, exposure to prolonged and/or extremely loud noise(s) can prevent use of exterior and interior spaces and has been theorized to pose health risks.

Sound pressure levels are usually measured and expressed in decibels (dB). The decibel scale is logarithmic and expresses the ratio of the sound pressure unit being measured to a standard reference level. Most sounds occurring in the environment do not consist of a single frequency, but rather a broad band of differing frequencies. The intensities of each frequency add together to generate sound. Because the human ear does not respond to all frequencies equally, the method commonly used to quantify environmental noise consists of evaluating all of the frequencies of a sound according to a weighting system. It has been found that the A-weighted filter on a sound level meter, which includes circuits to differentially measure selected audible frequencies, best approximates the frequency response of the human ear.

As shown in **Figure 1**, most individuals are exposed to fairly high noise levels from many sources on a regular basis. In order to perceive sounds of greatly varying pressure levels, human hearing has a non-linear sensitivity to sound pressure exposure. For example, doubling the sound pressure results in a three decibel change in the noise level; however, variations of three decibels [3 dB(A)] or less are commonly considered “barely perceptible” to normal human hearing. A five decibel [5 dB(A)] change is more readily noticeable. A ten-fold increase in the sound pressure level correlates to a 10 decibel [10 dB(A)] noise level increase; however, it is judged by most people as only a doubling of the loudness – sounding “twice as loud”.

Figure 1: Common Noise Levels



## Ambient Noise Monitoring

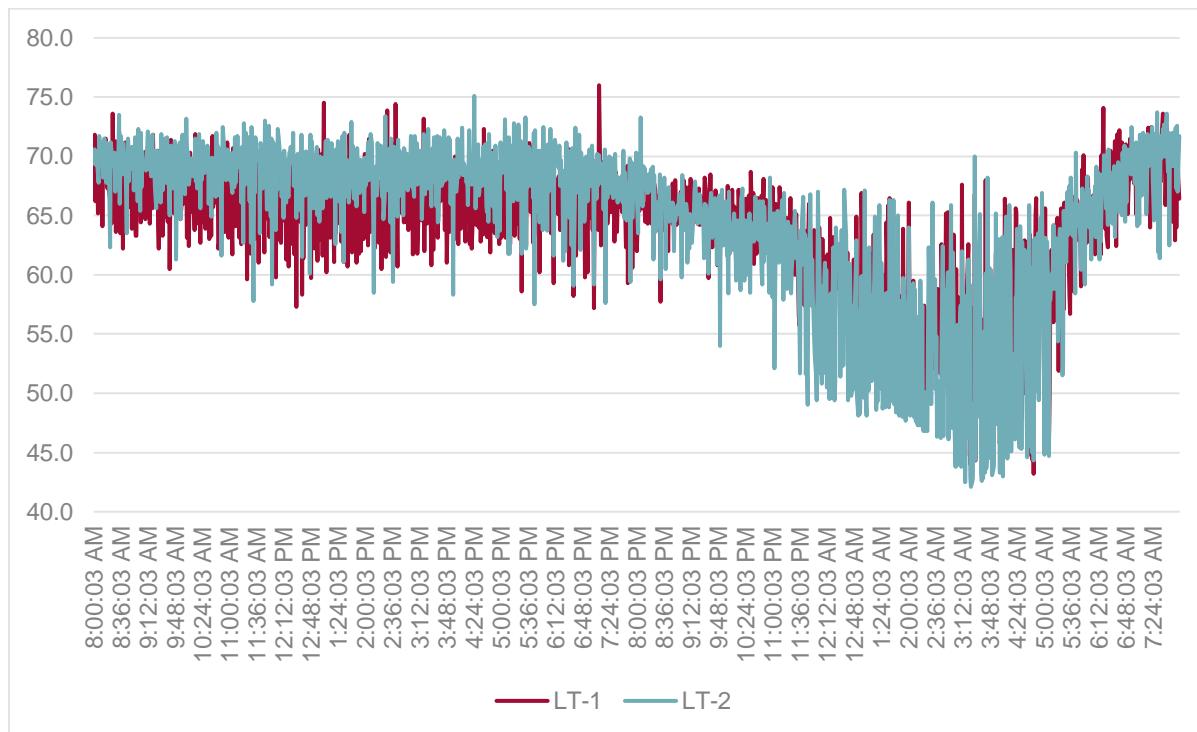
Kimley-Horn staff conducted noise monitoring from August 18, 2020 to August 19, 2020 in order to document the existing noise levels on either side of Fordham Boulevard in the vicinity of the residences located along Hickory Drive. Noise measurements were collected with two Norsonic NOR140 Type I Precision Integrating Sound Level Meters. Measurements were taken using the A-weighted scale and were reported in decibels [dB(A)]. Data collected by the noise meters included time, average noise level ( $L_{eq}$ ), maximum noise level ( $L_{max}$ ), and instantaneous peak noise level ( $L_{pk}$ ) for each interval. The  $L_{eq}$  is the equivalent steady-state noise level for the measurement period, and the  $L_{max}$  is the loudest observed noise level during the measurement period.

Noise measurements of 24 hours were obtained at two locations near the proposed EB-5721 multi-use path. Noise sources in the area are generally composed of environmental noise (birds, insects, wind in trees, etc.) during the late evening/early morning hours and noise generated from Fordham Boulevard during daytime hours. **Table 1** summarizes the noise levels obtained from the long-term measurements. Pictures of each field monitoring setup are shown in **Table 2**. The locations of the monitoring sites are shown in **Figure 2**. The minute-to-minute fluctuations in noise levels recorded at the measurement locations are shown in **Chart 1**.

**Table 1. Long-Term Noise Measurement Summary**

| Setup (ML) | Monitored 24-hr Average Sound Level [ $L_{eq}$ , dB(A)] | Maximum One-Minute Interval Monitored Sound Level [ $L_{eq}$ , dB(A)] |
|------------|---------------------------------------------------------|-----------------------------------------------------------------------|
| LT-1       | 66.3                                                    | 76.0                                                                  |
| LT-2       | 67.5                                                    | 75.1                                                                  |

**Table 2. Long-term Noise Measurement Setup Pictures**




**Figure 2: Noise Measurement Locations**



To help determine what source corresponded to specific noise levels, sound recorders were synced to each of the noise meters. Kimley-Horn used these recordings, as well as field observations, to identify a sampling of noise sources. During the daytime hours, the noise levels at the measurement locations were observed to be generally composed of traffic-related noise including engine exhaust, drive train, and tire-roadway interaction. Occasionally, the siren of an emergency services vehicle was noted, which corresponds to the maximum monitored sound level shown in **Table 1**.

**Chart 1: One-minute Interval Leq Values at LT-1 and LT-2**



As displayed in the chart, sound levels vary throughout the day with occasional peaks during the daytime hours due to sirens from emergency services vehicles. Both measurement locations were the same distance from the edge of Fordham Boulevard, and the microphones were located at approximately the same elevation above the roadway. The noise levels fluctuated throughout the day; however, the monitored noise levels at LT-2 were slightly higher on average. The difference in noise levels is not considered noticeable to the human ear.

### **Noise Abatement Measures**

Passive noise abatement measures are effective because they absorb sound energy, extend the source-to-receptor sound transmission path, or both. Sound absorption is a function of abatement medium (e.g. earth berms absorb more sound energy than noise walls of the same height because earth berms are more massive). The source-to-receptor path is extended by placement of an obstacle, such as an earth berm or concrete wall, that sufficiently blocks the transmission of sound waves that travel from the source to the receptor.

Sound barriers are primarily constructed as earth berms or solid-mass walls adjacent to sources of noise that are in proximity to noise-sensitive land use(s). To be effective, a sound barrier must be long enough and tall enough to shield potentially impacted areas. Generally, the noise barrier length must be eight times the distance from the barrier to the receptor. For example, if a receptor is 200 feet from the noise source, an effective barrier would be approximately 1,600 feet long – with the noise-sensitive land use in the horizontal center.

Since the property lines of the residences located along Hickory Drive are relatively close to Fordham Boulevard (~50 feet), constructing an earthen berm is not feasible due to the lack of available right-of-way. Alternatively, a noise wall does not require as much room to construct, so including one in the design of STIP Project EB-5721 may be more feasible. In order to construct a potential noise wall, the existing vegetation east of Fordham Boulevard would likely need to be cleared, which has caused concern for the residences located along Hickory Drive.

According to the Federal Highway Administration (FHWA), vegetation has the potential to decrease traffic noise if it is high enough, wide enough, and dense enough that it cannot be seen through. For example, a 200-foot wide strip of dense vegetation can reduce noise levels by approximately 10 decibels, which cuts in half the loudness of traffic noise. It is usually impossible, however, to plant enough vegetation along a road to achieve such reductions. For comparison, the vegetation between Fordham Boulevard and the adjacent residences is nearly 35-feet wide and can be seen through. Therefore, the existing vegetation's ability to reduce traffic noise from Fordham Boulevard is low.

On the other hand, roadside landscaping may be planted to create a psychological relief. Since a substantial noise reduction cannot be obtained for an extended period of time, the planting of vegetation is not considered to be a form of noise mitigation by the FHWA and North Carolina Department of Transportation. The planting of trees and shrubs only offers psychological benefits and may be provided for visual, privacy, or aesthetic treatment, not noise abatement.

## Recommendations

Based on the noise level data collected in the field and the information on vegetative buffers from FHWA, the existing vegetation between Fordham Boulevard and the residences along Hickory Drive is not providing any noticeable reductions in traffic noise levels. However, the existing vegetation is likely providing a visual barrier from Fordham Boulevard traffic, which may cause the perceived noise levels to be lower than they actually are. Although the multi-use path project proposes to remove the existing vegetative buffer, noise levels are anticipated to remain similar to what is experienced today.

In order to address the concerns of removing the vegetative buffer and perceived noise level increases, it is anticipated that constructing a 1,170-foot-long privacy fence with noise absorptive treatments, such as Acoustifence, along the property line adjacent to the proposed multi-use path may assist in reducing potential noise related concerns at the residences located along Hickory Drive.